(本小题满分12分)
已知,
,记函数
.
(1)求函数的周期及
的最大值和最小值;
(2)求在
上的单调递增区间.
设 为实数,函数 .
(1)若 ,求 的取值范围;
(2)求 的最小值;
(3)设函数 ,直接写出(不需给出演算步骤)不等式 的解集.
按照某学者的理论,假设一个人生产某产品单件成本为
元,如果他卖出该产品的单价为
元,则他的满意度为
;如果他买进该产品的单价为
元,则他的满意度为
.如果一个人对两种交易(卖出或买进)的满意度分别为
和
,则他对这两种交易的综合满意度为
.
现假设甲生产
、
两种产品的单件成本分别为12元和5元,乙生产
、
两种产品的单件成本分别为3元和20元,设产品
、
的单价分别为
元和
元,甲买进
与卖出B的综合满意度为
,乙卖出
与买进
的综合满意度为
(1)求
和
关于
、
的表达式;当
时,求证:
=
;
(2)设
,当
、
分别为多少时,甲、乙两人的综合满意度均最大?最大的综合满意度为多少?(3)记(2)中最大的综合满意度为
,试问能否适当选取
、
的值,使得
和
同时成立,但等号不同时成立?试说明理由。
在平面直角坐标系
中,已知圆
和圆
.
(1)若直线
过点
,且被圆
截得的弦长为
,求直线
的方程;
(2)设 为平面上的点,满足:存在过点 的无穷多对互相垂直的直线 和 ,它们分别与圆 和圆 相交,且直线 被圆 截得的弦长与直线 被圆 截得的弦长相等,试求所有满足条件的点P的坐标.
设 是公差不为零的等差数列, 为其前 项和,满足 .
(1)求数列 的通项公式及前 项和 ;
(2)试求所有的正整数
,使得
为数列
中的项.
如图,在直三棱柱
中,
分别是
的中点,点
在
上,
.
求证:(1)
平面
;
(2)平面
平面
.