(本小题满分12分)
已知数列和
满足:
,
其中
为实数,
为正整数.
(1)对任意实数,证明数列
不是等比数列;
(2)试判断数列是否为等比数列,并证明你的结论;
(3)设,
为数列
的前
项和.是否存在实数
,使得对任意正整数
,都有
?若存在,求
的取值范围;若不存在,说明理由.
(本小题满分12分)汽车是碳排放量比较大的行业之一,某地规定,从年开始,将对二氧化碳排放量超过
的轻型汽车进行惩罚性征税.检测单位对甲.乙两品牌轻型汽车各抽取
辆进行二氧化碳排放量检测,记录如下(单位:
).
经测算得乙品牌轻型汽车二氧化碳排放量的平均值为.
(1)求表中的值,并比较甲.乙两品牌轻型汽车二氧化碳排放量的稳定性;
(2)从被检测的辆甲品牌轻型汽车中任取
辆,则至少有一辆二氧化碳排放量超过
的概率是多少?
设函数.
(1)求的单调区间;
(2)令,其图像上任意一点
处切线的斜率
恒成立,求实数
的取值范围;
(3)求证:对于任意正整数,有
.
已知定点F(3,0)和动点P(x,y),H为PF的中点,O为坐标原点,且满足.
(1)求点P的轨迹方程;
(2)过点F作直线与点P的轨迹交于A,B两点,点C(2,0).连接AC,BC与直线
分别交于点M,N.试证明:以MN为直径的圆恒过点F.
已知数列的前
项和
.
(1)求数列的通项公式;
(2)令,求
的前
项和
.
如图1是边长为4的等边三角形,将其剪拼成一个正三棱柱模型(如图2),使它的全面积与原三角形的面积相等。D为AC上一点,且BDDC1.
(1)求证:直线AB1∥平面BDC1
(2)求点A到平面BDC1的距离.