为创建绿色校园,学校决定对一块正方形的空地进行种植花草,现向学生征集设计图案.图案要求只能用圆弧在正方形内加以设计,使正方形和所画的图弧构成的图案,既是轴对称图形又是中心对称图形.种植花草部分用阴影表示.请你在图③、图④、图⑤中画出三种不同的的设计图案.
提示:在两个图案中,只有半径变化而圆心不变的图案属于同一种,例如:图①、图②只能算一种.
如图,已知∠1=∠2,AB•AC=AD•AE.求证:∠C=∠E.
解方程:
如图,直线l: 交x、y轴分别为A、B两点,C点与A点关于y轴对称.动点P、Q分别在线段AC、AB上(点P不与点A、C重合),满足∠BPQ=∠BAO.
(1)点A坐标是__________,点B的坐标__________,BC=__________.
(2)当点P在什么位置时,△APQ≌△CBP,说明理由.
(3)当△PQB为等腰三角形时,求点P的坐标.
如图,在直角坐标系中,B点的坐标为(a,b),且a、b满足.
(1)求B点的坐标;
(2)点A为y轴上一动点,过B点作BC⊥AB交x轴正半轴于点C,求证:BA=BC.
某长途汽车客运公司规定旅客可免费携带一定质量的行李,当行李的质量超过规定时,需要购买行李票.已知行李费y(元)是行李质量x(kg)之间的函数表达式为y=kx+b.这个函数的图像如图所示:
(1)求k和b的值;
(2)求旅客最多可免费携带行李的质量;
(3)求行李费为4~15元时,旅客携带行李的质量为多少?