游客
题文

写出下列命题的“非P”命题,并判断其真假:
(1)若有实数根.
(2)平方和为0的两个实数都为0.
(3)若是锐角三角形, 则的任何一个内角是锐角.
(4)若,则中至少有一为0.
(5)若 ,则 .

科目 数学   题型 解答题   难度 较易
登录免费查看答案和解析
相关试题

如图,在三棱锥 P - ABC 中, PA 底面 ABC , PA = AB , ABC = 6 0 ° , BCA = 9 0 ° ,点 D E 分别在棱 PB , PC 上,且 DE / / BC

(Ⅰ)求证: BC 平面 PAC

(Ⅱ)当 D PB 的中点时,求 AD 与平面 PAC 所成的角的大小;

(Ⅲ)是否存在点 E 使得二面角 A - DE - P 为直二面角?并说明理由。

ΔABC 中,角 A , B , C 的对边分别为 a , b , c , B = π 3 cos A = 4 5 , b = 3

(Ⅰ)求 sin C 的值;

(Ⅱ)求 Δ ABC 的面积。

设各项均为正数的数列 a n 满足 a 1 = 2 , a n = a n + 1 3 2 a n + 2 ( n N * ) .

(Ⅰ)若 a 2 = 1 4 , a 3 , a 4 ,并猜想 a 2008 的值(不需证明);

(Ⅱ)若 2 2 a 1 a 2 a n 4 n 2 恒成立,求 a 2 的值.

如图, M - 2 , 0 N 2 , 0 是平面上的两点,动点 p 满足: PM - PN = 2 .

(Ⅰ)求点 p 的轨迹方程;

(Ⅱ)设 d 为点 p 到直线 l x = 1 2 的距离,若 PM = 2 PN 2 ,求 PM d 的值.

如图, 为平面, α β = l , A α , B β , A B = 5 , A , B 在棱 l 上的射影分别为 A ` B ` A A ` = 3 B B ` = 2 .若二面角 α - l - β 的大小为 2 π 3 ,求:

(Ⅰ)点 B 到平面 α 的距离;

(Ⅱ)异面直线 l A B 所成的角(用反三角函数表示).

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号