一船由甲地逆水驶至乙地,甲、乙两地相距 S (km),水的流速为常量a(km/h),船在静水中的最大速度为b (km/h) (b>2a),已知船每小时的燃料费用(单位:元)与船在静水中的速度 v(km/h) 的平方成正比,比例系数为 k ,问:
(1)船在静水中的航行速度 v 为多少时,全程燃料费用最少?
(2)若水速 a =" 8.4" km/h,船在静水中的最大速度为b="25" km/h,要使全程燃料费用不超过40 k S元,求船在静水中的航行速度v 的范围。
已知二阶矩阵M有特征值λ1=4及属于特征值4的一个特征向量并有特征值λ2=-1及属于特征值-1的一个特征向量
(1)求矩阵M.(2)求M5α.
设数列的前
项和为
,已知
(n∈N*).
(Ⅰ)求数列的通项公式;
(Ⅱ)求证:当x>0时,
(Ⅲ)令,数列
的前
项和为
.利用(2)的结论证明:当n∈N*且n≥2时,
.
已知椭圆的中心在原点
,离心率
,右焦点为
.
(Ⅰ)求椭圆的方程;
(Ⅱ)设椭圆的上顶点为,在椭圆
上是否存在点
,使得向量
与
共线?若存在,求直线
的方程;若不存在,简要说明理由.
等差数列中,
,公差
,且它的第2项,第5项,第14项分别是等比数列
的第2项,第3项,第4项.
(Ⅰ)求数列与
的通项公式;
(Ⅱ)设数列对任意自然数均有
成立,求
的值.
已知函数.
(Ⅰ)若,求函数
的极值,并指出是极大值还是极小值;
(Ⅱ)若,求证:在区间
上,函数
的图像在函数
的图像的下方.