设数列的前
项和为
,已知
(n∈N*).
(Ⅰ)求数列的通项公式;
(Ⅱ)求证:当x>0时,
(Ⅲ)令,数列
的前
项和为
.利用(2)的结论证明:当n∈N*且n≥2时,
.
(本小题满分10分)已知构成某系统的元件能正常工作的概率为p(0<p<1),且各个元件能否正常工作是相互独立的.今有2n(n大于1)个元件可按如图所示的两种联结方式分别构成两个系统甲、乙.
(1)试分别求出系统甲、乙能正常工作的概率p1,p2;
(2) 比较p1与p2的大小,并从概率意义上评价两系统的优劣.
(本小题满分10分)如图,在四棱锥OABCD中,底面ABCD是边长为1的菱形,∠ABC=45°,OA⊥底面ABCD,OA=2,M为OA的中点.
(1) 求异面直线AB与MD所成角的大小;
(2) 求平面OAB与平面OCD所成二面角的余弦值.
选修45:不等式选讲
已知a、b、c是正实数,求证:++≥++.
选修44:坐标系与参数方程
求曲线C1:被直线l:y=x-所截得的线段长.
选修42:矩阵与变换
已知点A在变换T:]→]=]的作用后,再绕原点逆时针旋转90°,得到点B.若点B坐标为(-3,4),求点A的坐标.