游客
题文

已知椭圆的中心在原点,离心率,右焦点为.
(Ⅰ)求椭圆的方程;
(Ⅱ)设椭圆的上顶点为,在椭圆上是否存在点,使得向量共线?若存在,求直线的方程;若不存在,简要说明理由.

科目 数学   题型 解答题   难度 较难
登录免费查看答案和解析
相关试题

(本小题15分)已知椭圆的右焦点恰好是抛物线的焦点
是椭圆的右顶点.过点的直线交抛物线两点,满足
其中是坐标原点.
(1)求椭圆的方程;
(2)过椭圆的左顶点轴平行线,过点轴平行线,直线
相交于点.若是以为一条腰的等腰三角形,求直线的方程.

(本小题15分)如图,四棱锥的底面为一直角梯形,其中

底面的中点.
(1)求证://平面
(2)若平面
①求异面直线所成角的余弦值;
②求二面角的余弦值.

(本小题14分)已知函数的图像与轴的交点为,它在轴右侧的第一个最高点和第一个最低点的坐标分别

(1)求的解析式及的值;
(2)若锐角满足,求的值.

(本小题14分)从这九个数字中任意取出不同的三个数字.
(1)求取出的这三个数字中最大数字是的概率;
(2)记取出的这三个数字中奇数的个数为,求随机变量的分布列与数学期望.

(本小题15分)已知抛物线,过点的直线交抛物线两点,且
(1)求抛物线的方程;
(2)过点轴的平行线与直线相交于点,若是等腰三角形,求直线的方程.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号