已知椭圆的中心在原点
,离心率
,右焦点为
.
(Ⅰ)求椭圆的方程;
(Ⅱ)设椭圆的上顶点为,在椭圆
上是否存在点
,使得向量
与
共线?若存在,求直线
的方程;若不存在,简要说明理由.
(本小题15分)已知椭圆的右焦点恰好是抛物线
的焦点
,
点是椭圆
的右顶点.过点
的直线
交抛物线
于
两点,满足
,
其中是坐标原点.
(1)求椭圆的方程;
(2)过椭圆的左顶点
作
轴平行线
,过点
作
轴平行线
,直线
与
相交于点
.若
是以
为一条腰的等腰三角形,求直线
的方程.
(本小题15分)如图,四棱锥的底面
为一直角梯形,其中
,
底面
,
是
的中点.
(1)求证://平面
;
(2)若平面
,
①求异面直线与
所成角的余弦值;
②求二面角的余弦值.
(本小题14分)已知函数的图像与
轴的交点为
,它在
轴右侧的第一个最高点和第一个最低点的坐标分别
为和
.
(1)求的解析式及
的值;
(2)若锐角满足
,求
的值.
(本小题14分)从这九个数字中任意取出不同的三个数字.
(1)求取出的这三个数字中最大数字是的概率;
(2)记取出的这三个数字中奇数的个数为,求随机变量
的分布列与数学期望.
(本小题15分)已知抛物线,过点
的直线
交抛物线
于
两点,且
.
(1)求抛物线的方程;
(2)过点作
轴的平行线与直线
相交于点
,若
是等腰三角形,求直线
的方程.