(本小题满分12分)某市规定,高中学生三年在校期间参加不少于小时的社区服务才合格.教育部门在全市随机抽取200位学生参加社区服务的数据,按时间段
,
,
,
,
(单位:小时)进行统计,其频率分布直方图如图所示.
(1)求抽取的200位学生中,参加社区服务时间不少于90小时的学生人数,并估计从全市高中学生中任意选取一人,其参加社区服务时间不少于90小时的概率;
(2)从全市高中学生(人数很多)中任意选取3位学生,记为3位学生中参加社区服务时间不少于90小时的人数.试求随机变量
的分布列和数学期望
.
设函数的最大值为M,最小正周期为T.
(Ⅰ)求M、T;
(Ⅱ)10个互不相等的正数满足
求
的值.
已知二次函数g(x)对任意实数x不等式x﹣1≤g(x)≤x2﹣x恒成立,且g(﹣1)=0,令.
(I)求g(x)的表达式;
(II)若∃x>0使f(x)≤0成立,求实数m的取值范围;
(III)设1<m≤e,H(x)=f(x)﹣(m+1)x,证明:对∀x1,x2∈[1,m],恒有|H(x1)﹣H(x2)|<1.
如图,以原点O为顶点,以y轴为对称轴的抛物线E的焦点为F(0,1),点M是直线l:y=m(m<0)上任意一点,过点M引抛物线E的两条切线分别交x轴于点S,T,切点分别为B,A.
(I)求抛物线E的方程;
(Ⅱ)求证:点S,T在以FM为直径的圆上;
(Ⅲ)当点M在直线l上移动时,直线AB恒过焦点F,求m的值.
已知圆M:(x+1)2+y2=8,定点N(1,0),点P为圆M上的动点,若Q在NP上,点G在MP上,且满足.
(I)求点G的轨迹C的方程;
(II)直线l过点P(0,2)且与曲线C相交于A、B两点,当△AOB面积取得最大值时,求直线l的方程.
如图边长为2的正方形花园的一角是以A为中心,1为半径的扇形水池.现需在其余部分设计一个矩形草坪PNCQ,其中P是水池边上任意一点,点N、Q分别在边BC和CD上,设∠PAB为θ.
(I)用θ表示矩形草坪PNCQ的面积,并求其最小值;
(II)求点P到边BC和AB距离之比的最小值.