从一副经过充分洗牌的52张(去掉大,小王)扑克牌中任取一张,这张牌是红色,黑色的可能性哪个大
(·湖南益阳)已知抛物线E1:y=x2经过点A(1,m),以原点为顶点的抛物线E2经过点B(2,2),点A、B关于y 轴的对称点分别为点A′,B′.
(1)求m的值及抛物线E2所表示的二次函数的表达式;
(2)如图1,在第一象限内,抛物线E1上是否存在点Q,使得以点Q、B、B′为顶点的三角形为直角三角形?若存在,求出点Q的坐标;若不存在,请说明理由;
(3)如图2,P为第一象限内的抛物线E1上与点A不重合的一点,连接OP并延长与抛物线E2相交于点P′,求△PAA′与△P′BB′的面积之比.
(·湖南长沙)若关于x的二次函数y=a+bx+c(a>0,c>0,a、b、c是常数)与x轴交于两个不同的点A(
,0),B(
,0)(0<
<
),与y轴交于点P,其图像顶点为点M,点O为坐标原点。
(1)当=c=2,a=
时,求
与b的值;
(2)当=2c时,试问△ABM能否为等边三角形?判断并证明你的结论;
(3)当=mc(m>0)时,记△MAB,△PAB的面积分别为S1,S2,若△BPO∽△PAO,且S1=S2,求m的值。
|
(·湖南常德)如图,曲线抛物线的一部分,且表达式为:
曲线
与曲线
关于直线
对称。
(1)求A、B、C三点的坐标和曲线的表达式;
(2)过点D作轴交曲线
于点D,连接AD,在曲线
上有一点M,使得四边形ACDM为筝形(如果一个四边形的一条对角线被另一条对角线垂直平分,这样的四边形为筝形),请求出点M的横坐标。
(3)设直线CM与轴交于点N,试问在线段MN下方的曲线
上是否存在一点P,使△PMN的面积最大?若存在,求出点P的坐标;若不存在,请说明理由。
(·湖北孝感)在平面直角坐标系中,抛物线与
轴交于点
,
,与
轴交于点
,直线
经过
,
两点.
(1)求抛物线的解析式;
(2)在上方的抛物线上有一动点
.
①如图1,当点运动到某位置时,以
为邻边的平行四边形第四个顶点恰好也在抛物线上,求出此时点
的坐标;
②如图2,过点,
的直线
交
于点
,若
,求
的值.
(·湖北孝感)如图,四边形是矩形纸片,
.对折矩形纸片
,使
与
重合,折痕为
;展平后再过点
折叠矩形纸片,使点
落在
上的点
,折痕
与
相交于点
;再次展平,连接
,
,延长
交
于点
.
有如下结论:;
②;
③;
④△是等边三角形;
⑤为线段
上一动点,
是
的中点,则
的最小值是
.
其中正确结论的序号是 .