设函数f(x)=ax3+bx2+cx+d的图象与y轴的交点为P,且曲线f(x)在P点出处的切线方程为24x+y-12=0,又函数在x=2出处取得极值-16,求该函数的单调递减区间.
已知是椭圆
的两个焦点,
为坐标原点,点
在椭圆上,且
,⊙
是以
为直径的圆,直线
:
与⊙
相切,并且与椭圆交于不同的两点
(1)求椭圆的标准方程;
(2)当,且满足
时,求弦长
的取值范围.
从1,2,3,4,5,6中不放回地随机抽取四个数字,记取得的四个数字之和除以4的余数为,除以3的余数为
(1)求X=2的概率;
(2)记事件为事件
,事件
为事件
,判断事件
与事件
是否相互独立,并给出证明.
如图,一简单组合体的一个面ABC内接于圆O,AB是圆O的直径,四边形DCBE为平行四边形,且DC平面ABC.
(1)证明:平面ACD平面
;
(2)若,
,
,试求该简单组合体的体积V.
已知向量,
,对任意
都有
.
(1)求的最小值;
(2)求正整数,使
在中,角
所对的边分别为
,函数
在
处取得最大值.
(1)求角A的大小.
(2)若且
,求
的面积.