某单位为了丰富职工的业余文化生活,决定在广场放映露天电影,小明和小强吃过晚饭手拉手来到广场,准备看电影,可小明非要在背面看,于是小强在正面,小明在背面,如图,如果他俩眼睛在同一水平面上,而且看同一点时视线与水平线夹角相等.利用三角形全等,能判断他俩距屏幕一样远吗?
思考:结果为:___________.
证明:如图:
∠OAC=∠OBC
∵OC⊥AB
∴∠ACO=______=90°
在△OAC和△OBC中:
∠OAC=∠OBC
∠ACO=______
OC=______
∴△OAC≌△OBC,理由( ).
因此判断他们距屏幕的距离_________.
在中央电视台第2套《购物街》栏目中,有一个精彩刺激的游戏――幸运大转盘,其规则如下:
①游戏工具是一个可绕轴心自由转动的圆形转盘,转盘按圆心角均匀划分为20等分,并在其边缘标记5、10、15、…、100共20个5的整数倍数,游戏时,选手可旋转转盘,待转盘停止时,指针所指的数即为本次游戏的得分;
②每个选手在旋转一次转盘后可视得分情况选择是否再旋转转盘一次,若只旋转一次,则以该次得分为本轮游戏的得分,若旋转两次则以两次得分之和为本轮游戏的得分;
③若某选手游戏得分超过100分,则称为“爆掉”,该选手本轮游戏裁定为“输”,在得分不超过100分的情况下,分数高者裁定为“赢”;
④遇到相同得分的情况,相同得分的选手重新游戏,直到分出输赢.
现有甲、乙两位选手进行游戏,请解答以下问题:
(1)甲已旋转转盘一次,得分65分,他选择再旋转一次,求他本轮游戏不被“爆掉”的概率.
(2)若甲一轮游戏最终得分为90分,乙第一次旋转转盘得分为85分,则乙还有可能赢吗?赢的概率是多少?
(3)若甲、乙两人交替进行游戏,现各旋转一次后甲得85分,乙得65分,你认为甲是否应选择旋转第二次?说明你的理由.
某中学九(1)班同学积极响应“阳光体育工程”的号召,利用课外活动时间积极参加体育锻炼,每位同学从长跑、篮球、铅球、立定跳远中选一项进行训练,训练前后都进行了测试.现将项目选择情况及训练后篮球定时定点投篮测试成绩整理后作出如下统计图表.
请你根据图表中的信息回答下列问题:
(1)训练后篮球定时定点投篮人均进球数为▲ ;
(2)选择长跑训练的人数占全班人数的百分比是▲ ,该班共有同学▲ 人;
(3)根据测试资料,训练后篮球定时定点投篮的人均进球数比训练之前人均进球数增加25% , 请求出参加训练之前的人均进球数.
已知:如图,AB是⊙O的直径,点C、D为圆上两点,且弧CB=弧CD,CF⊥AB于点F,CE⊥AD的延长线于点E.
(1)试说明:DE=BF;
(2)若∠DAB=60°,AB=6,求△ACD的面积.
.先化简分式,再从不等式组
的解集中取一个合适的值代入,求原分式的值.
(本大题满分8分,每小题4分)
(1)计算: (2)解方程: