已知命题p:方程x2+mx+1=0有两个不等的负根;命题q:方程4x2+4(m-2)x+1=0无实根.若“p或q”为真,“p且q”为假,求m的取值范围.
如图,在四棱锥中,
平面
,底面
是菱形,
,
为
与
的交点,
为
上任意一点.
(Ⅰ)证明:平面平面
;
(Ⅱ)若平面
,并且二面角
的大小为
,求
的值.
已知函数的最大值为2.
(1)求函数在
上的单调递减区间;
(2)△ABC中,,角A、B、C所对的边分别是a、b、c,且C=60,c=3,求△ABC的面积.
一个袋子装有大小形状完全相同的9个球,其中5个红球编号分别为1,2,3,4,5,4个白球编号分别为1,2,3,4,从袋中任意取出3个球.
(Ⅰ)求取出的3个球编号都不相同的概率;
(Ⅱ)记为取出的3个球中编号的最小值,求
的分布列与数学期望.
设函数的最小值为a.
(Ⅰ)求a;
(Ⅱ)已知两个正数m,n满足,求
的最小值.
以直角坐标系的原点为极点,
轴的正半轴为极轴,且两个坐标系取相等的长度单位.已知直线
的参数方程为
(
为参数,
),曲线
的极坐标方程为
.
(Ⅰ)求曲线的直角坐标方程;
(Ⅱ)设直线与曲线
相交于
、
两点,当
变化时,求
的最小值.