某工厂有甲、乙两条生产线先后投产.在乙生产线投产以前,甲生产线已生产了200吨成品;从乙生产线投产开始,甲、乙两条生产线每天分别生产20吨和30吨成品.
(1)分别求出甲、乙两条生产线投产后,总产量y(吨)与从乙开始投产以来所用时间x(天)之间的函数关系式,并求出第几天结束时,甲、乙两条生产线的总产量相同;
(2)在如图所示的直角坐标系中,作出上述两个函数在第一象限内的图象;观察图象,分别指出第15天和第25天结束时,哪条生产线的总产量高?
如图,正比例函数 的图象与反比例函数 的图象交于 、 两点.点 在 轴负半轴上, , 的面积为12.
(1)求 的值;
(2)根据图象,当 时,写出 的取值范围.
大黄鱼是中国特有的地方性鱼类,有“国鱼”之称,由于过去滥捕等多种因素,大黄鱼资源已基本枯竭,目前,我市已培育出十余种大黄鱼品种,某鱼苗人工养殖基地对其中的四个品种“宁港”、“御龙”、“甬岱”、“象山港”共300尾鱼苗进行成活实验,从中选出成活率最高的品种进行推广,通过实验得知“甬岱”品种鱼苗成活率为 ,并把实验数据绘制成下列两幅统计图(部分信息未给出)
(1)求实验中“宁港”品种鱼苗的数量;
(2)求实验中“甬岱”品种鱼苗的成活数,并补全条形统计图;
(3)你认为应选哪一品种进行推广?请说明理由.
在 的方格纸中, 的三个顶点都在格点上.
(1)在图1中画出与 成轴对称且与 有公共边的格点三角形(画出一个即可);
(2)将图2中的 绕着点 按顺时针方向旋转 ,画出经旋转后的三角形.
如图,在矩形 中,点 是 上的一个动点,连接 ,作点 关于 的对称点 ,且点 落在矩形 的内部,连接 , , ,过点 作 交 于点 ,设 .
(1)求证: ;
(2)当点 落在 上时,用含 的代数式表示 的值;
(3)若 ,且以点 , , 为顶点的三角形是直角三角形,求 的值.
如图1,在 中, ,点 从点 出发以 的速度沿折线 运动,点 从点 出发以 的速度沿 运动, , 两点同时出发,当某一点运动到点 时,两点同时停止运动.设运动时间为 , 的面积为 , 关于 的函数图象由 , 两段组成,如图2所示.
(1)求 的值;
(2)求图2中图象 段的函数表达式;
(3)当点 运动到线段 上某一段时 的面积,大于当点 在线段 上任意一点时 的面积,求 的取值范围.