游客
题文

如图,是三张方格纸,请你利用它们解决下列问题:
在图一中画出直线AB的平行线CD;
在图二中画出直线m的垂线n;
在图三中画一个斜放的正方形EFGH

科目 数学   题型 解答题   难度 较易
登录免费查看答案和解析
相关试题

某市为创建全国文明城市,开展“美化绿化城市”活动,计划经过若干年使城区绿化总面积新增360万平方米.自2013年初开始实施后,实际每年绿化面积是原计划的1.6倍,这样可提前4年完成任务.

(1)问实际每年绿化面积多少万平方米?

(2)为加大创城力度,市政府决定从2016年起加快绿化速度,要求不超过2年完成,那么实际平均每年绿化面积至少还要增加多少万平方米?

n 是一个两位正整数,且 n 的个位数字大于十位数字,则称 n 为“两位递增数”(如13,35,56等).在某次数学趣味活动中,每位参加者需从由数字1,2,3,4,5,6构成的所有的“两位递增数”中随机抽取1个数,且只能抽取一次.

(1)写出所有个位数字是5的“两位递增数”;

(2)请用列表法或树状图,求抽取的“两位递增数”的个位数字与十位数字之积能被10整除的概率.

如图,已知 BA = AE = DC AD = EC CE AE ,垂足为 E

(1)求证: ΔDCA ΔEAC

(2)只需添加一个条件,即  ,可使四边形 ABCD 为矩形.请加以证明.

已知: Rt Δ EFP 和矩形 ABCD 如图①摆放(点 P 与点 B 重合),点 F B ( P ) C 在同一直线上, AB = EF = 6 cm BC = FP = 8 cm EFP = 90 ° .如图②, ΔEFP 从图①的位置出发,沿 BC 方向匀速运动,速度为 1 cm / s EP AB 交于点 G ;同时,点 Q 从点 C 出发,沿 CD 方向匀速运动,速度为 1 cm / s .过点 Q QM BD ,垂足为 H ,交 AD 于点 M ,连接 AF PQ ,当点 Q 停止运动时, ΔEFP 也停止运动.设运动时间为 t ( s ) ( 0 < t < 6 ) ,解答下列问题:

(1)当 t 为何值时, PQ / / BD

(2)设五边形 AFPQM 的面积为 y ( c m 2 ) ,求 y t 之间的函数关系式;

(3)在运动过程中,是否存在某一时刻 t ,使 S 五边形AFPQM : S 矩形ABCD = 9 : 8 ?若存在,求出 t 的值;若不存在,请说明理由.

(4)在运动过程中,是否存在某一时刻 t ,使点 M 在线段 PG 的垂直平分线上?若存在,求出 t 的值;若不存在,请说明理由.

数和形是数学的两个主要研究对象,我们经常运用数形结合、数形转化的方法解决一些数学问题.下面我们来探究“由数思形,以形助数”的方法在解决代数问题中的应用.

探究一:求不等式 | x 1 | < 2 的解集

(1)探究 | x 1 | 的几何意义

如图①,在以 O 为原点的数轴上,设点 A ' 对应的数是 x 1 ,由绝对值的定义可知,点 A ' 与点 O 的距离为 | x 1 | ,可记为 A ' O = | x 1 | .将线段 A ' O 向右平移1个单位得到线段 AB ,此时点 A 对应的数是 x ,点 B 对应的数是1.因为 AB = A ' O ,所以 AB = | x 1 | .因此, | x 1 | 的几何意义可以理解为数轴上 x 所对应的点 A 与1所对应的点 B 之间的距离 AB

(2)求方程 | x 1 | = 2 的解

因为数轴上3和 1 所对应的点与1所对应的点之间的距离都为2,所以方程的解为3, 1

(3)求不等式 | x 1 | < 2 的解集

因为 | x 1 | 表示数轴上 x 所对应的点与1所对应的点之间的距离,所以求不等式解集就转化为求这个距离小于2的点对应的数 x 的范围.

请在图②的数轴上表示 | x 1 | < 2 的解集,并写出这个解集.

探究二:探究 ( x a ) 2 + ( y b ) 2 的几何意义

(1)探究 x 2 + y 2 的几何意义

如图③,在直角坐标系中,设点 M 的坐标为 ( x , y ) ,过 M MP x 轴于 P ,作 MQ y 轴于 Q ,则 P 点坐标为 ( x , 0 ) Q 点坐标为 ( 0 , y ) OP = | x | OQ = | y | ,在 Rt Δ OPM 中, PM = OQ = | y | ,则 MO = O P 2 + P M 2 = | x | 2 + | y | 2 = x 2 + y 2 ,因此, x 2 + y 2 的几何意义可以理解为点 M ( x , y ) 与点 O ( 0 , 0 ) 之间的距离 MO

(2)探究 ( x 1 ) 2 + ( y 5 ) 2 的几何意义

如图④,在直角坐标系中,设点 A ' 的坐标为 ( x 1 , y 5 ) ,由探究二(1)可知, A ' O = ( x 1 ) 2 + ( y 5 ) 2 ,将线段 A ' O 先向右平移1个单位,再向上平移5个单位,得到线段 AB ,此时点 A 的坐标为 ( x , y ) ,点 B 的坐标为 ( 1 , 5 ) ,因为 AB = A ' O ,所以 AB = ( x 1 ) 2 + ( y 5 ) 2 ,因此 ( x 1 ) 2 + ( y 5 ) 2 的几何意义可以理解为点 A ( x , y ) 与点 B ( 1 , 5 ) 之间的距离 AB

(3)探究 ( x + 3 ) 2 + ( y 4 ) 2 的几何意义

请仿照探究二(2)的方法,在图⑤中画出图形,并写出探究过程.

(4) ( x a ) 2 + ( y b ) 2 的几何意义可以理解为:  

拓展应用:

(1) ( x 2 ) 2 + ( y + 1 ) 2 + ( x + 1 ) 2 + ( y + 5 ) 2 的几何意义可以理解为:点 A ( x , y ) 与点 E ( 2 , 1 ) 的距离和点 A ( x , y ) 与点 F   (填写坐标)的距离之和.

(2) ( x 2 ) 2 + ( y + 1 ) 2 + ( x + 1 ) 2 + ( y + 5 ) 2 的最小值为  (直接写出结果)

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号