为了预防流感,某学校对教室采用药薰消毒法进行消毒,已知药物燃烧时,室内每立方米空气中的含药量y(毫克)与时间x(分钟)成正比例,药物燃烧后,y与x成反比例(如图),现测药物8分钟燃毕,此时空气中每立方米含药量为6毫克,请根据题中所提供的信息,回答下列问题:
(1)药物燃烧时,y关于x的函数关系式为 ,自变量x的取值范围是 ;药物燃烧完后,y与x的函数关系式为 ;
(2)研究表明,当空气中的每立方米的含药量低于1.6毫克时学生方可进教室,那么从消毒开始,至少需要经过几分钟后,学生才能回到教室?
(3)研究表明,当空气中每立方米的含药量不低于3毫克且持续时间不低于10分钟时,才能有效地杀灭空气中的病菌,那么此次消毒是否有效?为什么?
如图,在平面直角坐标系中,O是坐标原点,点A的坐标是(-2,4),过点A作AB⊥y轴,垂足为B,连结OA。
(1)求△OAB的面积;
(2)若抛物线经过点A。
①求c的值;
②将抛物线向下平移m个单位,使平移后得到的抛物线顶点落在△OAB的内部(不包括△OAB的边界),求m的取值范围(直接写出答案即可)。
某公司经销一种绿茶,每千克成本为50元.市场调查发现,在一段时间内,销售量(千克)随销售单价
(元/千克)的变化而变化,具体关系式为:
,且物价部门规定这种绿茶的销售单价不得高于90元/千克.设这种绿茶在这段时间内的销售利润为
(元),解答下列问题:
(1)求与
的关系式;
(2)当取何值时,
的值最大?
(3)如果公司想要在这段时间内获得2250元的销售利润,销售单价应定为多少元?
如图,在直角坐标平面中,O为坐标原点,二次函数的图象与
轴的负半轴相交于点C,点C的坐标为(0,-3),且BO=CO。
(1)求出B点坐标和这个二次函数的解析式
(2)求出随
的增大而减小的自变量
的取值范围
用长度为32m的金属材料制成如图所示的金属框,下部为一个矩形,上部为一个等边三角形。当下部的矩形面积最大时,求矩形的AB、BC的边长各为多少m?并求此时整个金属框的面积是多少?
已知二次函数y=ax2+bx-3的图象经过点A(2,-3),B(-1,0).
(1)求二次函数的解析式;
(2)填空:要使该二次函数的图象与x轴只有一个交点,
应把图象沿y轴向上平移 __________个单位.