(本小题满分12分)已知
(1) 求在
上的单调区间
(2)当x时,
的最小值为2,求
成立的
的取值集合。
(3)若存在实数,使得
,对任意x
恒成立,
求的值。
如图,四棱锥S-ABCD中,SD底面ABCD,AB//DC,AD
DC,
AB=AD=1,DC=SD=2,E为棱SB上的一点,平面EDC平面SBC .
(Ⅰ)证明:SE=2EB;
(Ⅱ)求二面角A-DE-C的大小 .
已知三棱锥P—ABC中,PC⊥底面ABC,,
,二面角P-AB-C为
,D、F分别为AC、PC的中点,DE⊥AP于E.
(Ⅰ)求证:AP⊥平面BDE;
(Ⅱ)求直线EB与平面PAC所成的角。
已知三棱锥P-ABC中,PA⊥ABC,AB⊥AC,PA=AC=½AB,N为AB上一点,AB=4AN,M,S分别为PB,BC的中点.
(Ⅰ)证明:CM⊥SN;
(Ⅱ)求SN与平面CMN所成角的大小.
如图所示,在正三棱柱中,底面边长为
,侧棱长为
,
是棱
的中点.
|
(Ⅰ)求证:平面
;
已知定点A(-1,0),F(2,0),定直线l:x=,不在x轴上的动点P与点F的距离是它到直线l的距离的2倍.设点P的轨迹为E,过点F的直线交E于B、C两点,直线AB、AC分别交l于点M、N
(Ⅰ)求E的方程;
(Ⅱ)试判断以线段MN为直径的圆是否过点F,并说明理由.