(本小题满分12分)
已知直线l:y=x,圆C1的圆心为(3,0),且经过(4,1)点.
(1)求圆C1的方程;
(2)若圆C2与圆C1关于直线l对称,点A、B分别为圆C1、C2上任意一点,求|AB|的最小值;
(3)已知直线l上一点M在第一象限,两质点P、Q同时从原点出发,点P以每秒1个单位的速度沿x轴正方向运动,点Q以每秒个单位沿射线OM方向运动,设运动时间为t秒.问:当t为何值时直线PQ与圆C1相切?
已知圆的圆心在坐标原点
,且恰好与直线
相切,设点A为圆上一动点,
轴于点
,且动点
满足
,设动点
的轨迹为曲线
(Ⅰ)求曲线C的方程;
(Ⅱ)直线交曲线
于不同的
两点,
是坐标原点,求
面积的最大值.
(本小题满分12分)已知在四棱锥中,底面
是菱形,且
,侧面
是正三角形,且面
面
,
为
的中点.
(Ⅰ)证明:∥面
;
(Ⅱ)求面与面
所成二面角的余弦值.
(本小题满分12分)为了参加中央电视台、国家语言文字工作委员会联合主办的《中国汉字听写大会》节目,某老师要求参赛学生从星期一到星期四每天学习3个汉字以及正确注释,每周五对一周内所学汉字随机抽取若干个进行检测(一周所学的汉字每个被抽到的可能性相同).
(Ⅰ)老师随机抽了4个汉字进行检测,求至少有3个是后两天学习过的汉字的概率;
(Ⅱ)某学生对后两天所学过的汉字每个能默写对的概率为,对前两天所学过的汉字每个能默写对的概率为
.若老师从后三天所学汉字中各抽取一个进行检测,求该学生能默写对的汉字的个数ξ的分布列和期望.
(本小题满分12分)已知.
(Ⅰ)求的最小正周期和对称轴方程;
(Ⅱ)在中,角
所对应的边分别为
,若有
,
,
,求
的面积.
选修4-5:不等式选讲
设函数.
(Ⅰ)当时,若不等式
的解集为
或
,求
的值;
(Ⅱ)若对
恒成立,求
的取值范围.