(本小题满分12分)
已知直线l:y=x,圆C1的圆心为(3,0),且经过(4,1)点.
(1)求圆C1的方程;
(2)若圆C2与圆C1关于直线l对称,点A、B分别为圆C1、C2上任意一点,求|AB|的最小值;
(3)已知直线l上一点M在第一象限,两质点P、Q同时从原点出发,点P以每秒1个单位的速度沿x轴正方向运动,点Q以每秒个单位沿射线OM方向运动,设运动时间为t秒.问:当t为何值时直线PQ与圆C1相切?
(本小题满分12分)
已知函数,
.
(1)求的最大值;
(2)设△中,角
、
的对边分别为
、
,若
且
,
求角的大小.
已知函数.
(1)当a = 2时,求f (x) 的最小值;
(2)若f (x)在[1,e]上为单调减函数,求实数a的取值范围.
已知二次函数+
的图象通过原点,对称轴为
,
.
是
的导函数,且
.
(1)求的表达式(含有字母
);
(2)若数列满足
,且
,求数列
的通项公式;
(3)在(2)条件下,若,
,是否存在自然数
,使得当
时
恒成立?若存在,求出最小的
;若不存在,说明理由.
(本小题满分14分)
已知椭圆的左、右焦点分别为
,点
是
轴上方椭圆
上的一点,且
,
,
.
(1)求椭圆的方程和
点的坐标;
(2)判断以为直径的圆与以椭圆
的长轴为直径的圆的位置关系.
如图,三角形中,
是边长为1的正方形,平面
底面
,若
分别是
的中点.
(1)求证:底面
;
(2)求证:⊥平面
;
(3)求几何体的体积
.