已知,直线
,
为平面上的动点,过点
作
的垂线,垂足为点
,且
.
(1)求动点的轨迹
的方程;
(2)过点的直线交轨迹
于
两点,点O是直角坐标系的原点,求
面积的最小值,并求出当
的面积取到最小值时直线
的方程。
·新课标理)平面直角坐标系xOy中,过椭圆M:右焦点的直线
交
于A,B两点,P为AB的中点,且OP的斜率为
.
(1)求M的方程;
(2)C,D为M上的两点,若四边形ACBD的对角线CD⊥AB,求四边形面积的最大值
·江西理)如图,椭圆经过点P(1.
),离心率e=
,直线l的方程为x=4.
(1)求椭圆C的方程;
(2)AB是经过右焦点F的任一弦(不经过点P),设直线AB与直线l相交于点M,记PA,PB,PM的斜率分别为.问:是否存在常数λ,使得
?若存在,求λ的值;若不存在,说明理由.
已知A、B、C是椭圆W:上的三个点,O是坐标原点.
(1)当点B是W的右顶点,且四边形OABC为菱形时,求此菱形的面积.
(2)当点B不是W的顶点时,判断四边形OABC是否可能为菱形,并说明理由.
如图,直线l:y=x+b与抛物线C:x2=4y相切于点A.
(1)求实数b的值;
(2)求以点A为圆心,且与抛物线C的准线相切的圆的方程.
如图,两条相交线段、
的四个端点都在椭圆
上,其中,直线
的方程为
,直线
的方程为
.
(1)若,
,求
的值;
(2)探究:是否存在常数,当
变化时,恒有
?