(本小题满分12分)如图,已知椭圆的长轴为
,过点
的直线
与
轴垂直,直线
所经过的定点恰好是椭圆的一个顶点,且椭圆的离心率
(1)求椭圆的标准方程;
(2)设是椭圆上异于
、
的任意一点,
轴,
为垂足,延长
到点
使得
,连接
并延长交直线
于点
,
为
的中点.试判断直线
与以
为直径的圆
的位置关系.
在直角坐标系中,直线
经过点
,其倾斜角为
,以原点O为极点,以x轴非负半轴为极轴,与直角坐标系
取相同的长度单位,建立极坐标系,设曲线C的极坐标方程为
.
(1)若直线与曲线C有公共点,求
的取值范围:
(2)设为曲线C上任意一点,求
的取值范围.
已知函数其中e是自然数的底数,
.
(1)当时,解不等式
;
(2)若上是单调增函数,求
的取值范围;
(3)当,求使方程
上有解的所有整数k的值.
已知圆C:(x-1)2+(y-1)2=2经过椭圆Γ∶(a>b>0)的右焦点F和上顶点B.
(1)求椭圆Γ的方程;
(2)如图,过原点O的射线与椭圆Γ在第一象限的交点为Q,与圆C的交点为P,M为OP的中点, 求
的最大值.
在如图所示的几何体中,四边形是等腰梯形,
∥
,
,
.在梯形
中,
∥
,且
,
⊥平面
.
(1)求证:;
(2)若二面角为
,求
的长.
某市四所中学报名参加某高校今年自主招生的学生人数如下表所示:
中学 |
![]() |
![]() |
![]() |
![]() |
人数 |
![]() |
![]() |
![]() |
![]() |
为了了解参加考试的学生的学习状况,该高校采用分层抽样的方法从报名参加考试的四所中学的学生当中随机抽取50名参加问卷调查.
(1)问四所中学各抽取多少名学生?
(2)从参加问卷调查的名学生中随机抽取两名学生,求这两名学生来自同一所中学的概率;
(3)在参加问卷调查的名学生中,从来自
两所中学的学生当中随机抽取两名学生,用
表示抽得
中学的学生人数,求
的分布列.