(本小题满分12分)如图,已知椭圆的长轴为
,过点
的直线
与
轴垂直,直线
所经过的定点恰好是椭圆的一个顶点,且椭圆的离心率
(1)求椭圆的标准方程;
(2)设是椭圆上异于
、
的任意一点,
轴,
为垂足,延长
到点
使得
,连接
并延长交直线
于点
,
为
的中点.试判断直线
与以
为直径的圆
的位置关系.
设点为圆
上的动点,过点
作
轴的垂线,垂足为
.动点
满足
(其中
,
不重合).
(Ⅰ)求点的轨迹
的方程;
(Ⅱ)过直线上的动点
作圆
的两条切线,设切点分别为
.若直线
与(Ⅰ)中的曲线
交于
两点,求
的取值范围.
如图,垂直平面
,
,
,点
在
上,且
.
(Ⅰ)求证:;
(Ⅱ)若二面角的大小为
,求
的值.
设公比为正数的等比数列的前
项和为
,已知
,数列
满足
.
(Ⅰ)求数列和
的通项公式;
(Ⅱ)是否存在,使得
是数列
中的项?若存在,求出
的值;若不存在,请说明理由.
在中,角
所对的边分别为
,已知
成等比数列,且
.
(Ⅰ)求角的大小;
(Ⅱ)若,求函数
的值域.
(本题满分14分)已知函数.
(1)求函数的单调区间;
(2)若恒成立,求实数k的取值范围;
(文科(3)证明: .
(理科(3)证明:.