(本小题满分12分)已知,函数
.
(1)求函数的最小正周期;
(2)在中,已知
为锐角,
,
,求
边的长.
已知如图,P平面ABC,PA=PB=PC,∠APB=∠APC=60°,∠BPC=90°求证:平面ABC⊥平面PBC
如图02,在长方体ABCD-A1B1C1D1中,P、Q、R分别是棱AA1、BB1、BC上的点,PQ∥AB,C1Q⊥PR,求证:∠D1QR=90°.
点P在平面ABC的射影为O,且PA、PB、PC两两垂直,那么O是△ABC的( )
A.内心 | B.外心 |
C.垂心 | D.重心 |
在立体图形P-ABCD中,底面ABCD是正方形,PA⊥底面ABCD,PA=AB,Q是PC中点.
AC,BD交于O点.
(Ⅰ)求二面角Q-BD-C的大小:
(Ⅱ)求二面角B-QD-C的大小.
已知ABCD是边长为4的正方形,E、F分别是AB、AD的中点,GC垂直于ABCD所在的平面,且GC=2.求点B到平面EFG的距离.