(本小题满分14分)关于的方程
(1)若方程C表示圆,求实数m的取值范围;
(2)在方程C表示圆时,若该圆与直线
且,求实数m的值;
(3)在(2)的条件下,若定点A的坐标为(1,0),点P是线段MN上的动点,
求直线AP的斜率的取值范围。
如图,在△ABC中,CD是∠ACB的角平分线,△ADC的外接圆交BC于点E,AB=2AC
(1)求证:BE=2AD;
(2)当AC=3,EC=6时,求AD的长.
已知函数函数
在
处取得极值1.
(1)求实数b,c的值;
(2)求在区间[-2,2]上的最大值.
已知圆的圆心在坐标原点
,且恰好与直线
相切,设点A为圆上一动点,
轴于点
,且动点
满足
,设动点
的轨迹为曲线
(1)求曲线C的方程,
(2)直线l与直线l,垂直且与曲线C交于B、D两点,求△OBD面积的最大值.
如图,四棱锥中,底面
为平行四边形,
底面
(1)证明:平面平面
;
(2)若二面角大小为
,求
与平面
所成角的正弦值.
某市教育局为了了解高三学生体育达标情况,在某学校的高三学生体育达标成绩中随机抽取100个进行调研,按成绩分组:第l组[75,80),第2组[80,85),第3组[85,90),第4组[90,95),第5组[95,100]得到的频率分布直方图如图所示:
若要在成绩较高的第3,4,5组中用分层抽样抽取6名学生进行复查:
(1)已知学生甲和学生乙的成绩均在第四组,求学生甲和学生乙至少有一人被选中复查的概率;
(2)在已抽取到的6名学生中随机抽取3名学生接受篮球项目的考核,设第三组中有三名学生接受篮球项目的考核,求暑的分布列和数学期望.