如图,2012年春节,摄影爱好者S在某公园A处,发现正前方B处有一立柱,测得立柱顶端O的仰角和立柱底部B的俯角均为,已知S的身高约为米(将眼睛距地面的距离按米处理)(1) 求摄影者到立柱的水平距离和立柱的高度;(2) 立柱的顶端有一长2米的彩杆MN绕中点O在S与立柱所在的平面内旋转.摄影者有一视角范围为的镜头,在彩杆转动的任意时刻,摄影者是否都可以将彩杆全部摄入画面?说明理由.
解关于的不等式.
在如图所示的多面体中,平面平面,是边长为2的正三角形,,且 (1)求证:; (2)求多面体的体积。
如图,点为椭圆右焦点,圆与椭圆的一个公共点为,且直线与圆相切与点。 (1)求的值及椭圆的标准方程; (2)设动点满足,其中是椭圆上的点,为原点,直线与的斜率之积为,求证:为定值。
已知是自然对数的底数,函数。 (1)求函数的单调递增区间; (2)当时,函数的极大值为,求的值。
在正项数列中,,对任意,函数满足, (1)求数列的通项公式; (2)求数列的前项和。
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号