某校高三文科分为四个班.高三数学调研测试后, 随机地在各班抽取部分学生进行测试成绩统计,各班被抽取的学生人数恰好成等差数列,人数最少的班被抽取了22人.抽取出来的所有学生的测试成绩统计结果的频率分布条形图如图所示,其中 120~130(包括120分但不包括130分)的频率为0.05,此分数段的人数为5人.
(1) 问各班被抽取的学生人数各为多少人?
(2) 在抽取的所有学生中,任取一名学生, 求分数不小于90分的概率.
(本小题满分10分)选修4—1:几何证明选讲
如图,已知与圆
相切于点
,半径
,
交
于
点
,
(Ⅰ)求证:;
(Ⅱ)若圆的半径为3,
,求
的长度.
(本小题满分12分)
已知函数,
.
(Ⅰ)若函数依次在
处取到极值.
(ⅰ)求的取值范围;
(ⅱ)若成等差数列,求
的值
.
(Ⅱ)当时
,对任意的
,不等式
恒成立.求正整数
的最大值.
(本小题满分12分)
如图,已知,
分别是椭圆
:
(
)的左、右焦点,且椭圆
的离心率
,
也是抛物线
:
的焦点.
(Ⅰ)求椭圆的方程;
(Ⅱ)过点的直线
交椭圆
于
,
两点,且
,点
关于
轴的对称点为
,求直线
的方程.
(本小题满分12分)
如图,四棱锥的底面
为菱形,
平面
,
,
分别为
的中点,
.
(Ⅰ)求证:平面平面
.
(Ⅱ)求平面与平面
所成的锐二面角的余弦值.
(本小题满分12分)
为调查某市学生百米运动成绩,从该市学生中按照男女生比例随机抽取50名学生进行百米测试,学生成绩全部都介于13秒到18秒之间,将测试结果按如下方式分成五组,第一组,第二组
……第五组
,如图是按上述分组方法
得到的频率分布直方图.
(Ⅰ)求这组数据的众数和中位数(精确到0.1);
( II )根据有关规定,成绩小于16秒为达标.
(ⅰ)用样本估计总体,某班有学生45人,设为达标人数,求
的数学期望与方差.
(ⅱ)如果男女生使用相同的达标标准,则男女
生达标情况如下表
性别 是否达标 |
男 |
女 |
合计 |
达标 |
![]() |
![]() |
_____ |
不达标 |
![]() |
![]() |
_____ |
合计 |
______ |
______ |
![]() |
根据上表数据,能否有99%的把握认为“体育达标与性别有关”?若有,你能否提出一个更好的解决方法来?