设数列的前项n和为,若对于任意的正整数n都有.(1)设,求证:数列是等比数列,并求出的通项公式。(2)求数列的前n项和.
已知函数 (Ⅰ)求函数的最小值; (Ⅱ)已知,命题p:关于x的不等式对任意恒成立;命题q:函数是增函数.若“p或q”为真,“p且q”为假,求实数m的取值范围
(本小题满分10分) 已知函数(为常数,且)的图象过点. (1)求实数的值; (2)若函数,试判断函数的奇偶性,并说明理由.
抛物线经过点、与, 其中,,设函数在和处取到极值. (1)用表示; (2) 比较的大小(要求按从小到大排列); (3)若,且过原点存在两条互相垂直的直线与曲线均相切,求的解析式.
在中,且. (1)判断的形状; (2)若求的取值范围.
设函数. (1)求函数的单调区间; (2)若对恒成立,求实数的取值范围.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号