游客
题文

某项选拔共有三轮考核,每轮设有一个问题,能正确回答问题者进入下一轮考试,否则即被淘汰,已知某选手能正确回答第一、二、三轮的问题的概率分别为,且各轮问题能否正确回答互不影响.
(Ⅰ)求该选手被淘汰的概率;
(Ⅱ)该选手在选拔中回答问题的个数记为ξ,求随机变量ξ的分布列与数数期望.(注:本小题结果可用分数表示)

科目 数学   题型 解答题   难度 容易
知识点: 随机思想的发展
登录免费查看答案和解析
相关试题

(本小题满分12分)
解不等式x2-x+a-a2<0.

(本小题满分12分)
△ABC中,内角A、B、C的对边分别为a、b、c
(I)若△ABC面积,c=2,A=60°,求a,b的值
(Ⅱ)若a=c·cosB,且b=c·sinA,试判断△ABC的形状

(本小题满分12分)某公司计划2008年在甲、乙两个电视台做总时间不超过300分钟的广告,广告总费用不超过9万元,甲、乙电视台的广告收费标准分别为元/分钟和200元/分钟,规定甲、乙两个电视台为该公司所做的每分钟广告,能给公司事来的收益分别为0.3万元和0.2万元.问该公司如何分配在甲、乙两个电视台的广告时间,才能使公司的收益最大,最大收益是多少万元?

(本小题满分10分)
(1)等差数列{}中,已知a1,a2+a5=4,=33,试求n的值.
(2)在等比数列{}中,a5=162,公比q=3,前n项和=242,求首项a1和项数n.

在平面直角坐标系中,已知以O为圆心的圆与直线恒有公共点,且要求使圆O的面积最小.
(1)写出圆O的方程;
(2)圆O与x轴相交于A、B两点,圆内动点P使成等比数列,求的范围;
(3)已知定点Q(−4,3),直线与圆O交于M、N两点,试判断是否有最大值,若存在求出最大值,并求出此时直线的方程,若不存在,给出理由.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号