盒中有6只灯泡,其中有2只是次品,4只是正品.从中任取2只,试求下列事件的概率.
(Ⅰ)取到的2只都是次品;
(Ⅱ)取到的2只中恰有一只次品.
设两个非零向量a与b不共线,
(1)若=a+b,
=2a+8b,
=3(a-b),求证:A、B、D三点共线;
(2)试确定实数k,使ka+b和a+kb共线.
如图所示,若四边形ABCD是一个等腰梯形,AB∥DC,M、N分别是DC、AB的中点,已知=a,
=b,
=c,试用a、b、c表示
,
,
+
.
定理:若函数在闭区间[m,n]上是连续的单调函数,且
,则存在唯一一个
。已知
(1)若是减函数,求a的取值范围。
(2)是否存在同时成立,若存在,指出c、d之间的等式关系,若不存在,请说明理由。
已知函数时取最大值2。
是集合
中的任意两个元素,
的最小值为
。
(1)求a、b的值;
(2)若的值。
已知圆C:x2+y2+2x-4y+3=0,若圆C的切线在x轴和y轴上的截距绝对值相等,求切线方程.