(本小题满分12分)某项计算机考试按科目A、科目B依次进行,只有大拿感科目A成绩合格时,才可继续参加科目B的考试,已知每个科目只允许有一次补考机会,两个科目均合格方快获得证书,现某人参加这项考试,科目A每次考试成绩合格的概率为,科目B每次考试合格的概率为
,假设各次考试合格与否均互不影响.
(Ⅰ)求他不需要补考就可获得证书的概率;
(Ⅱ)在这次考试过程中,假设他不放弃所有的考试机会,记他参加考试的次数为,求随即变量
的分布列和数学期望.
如图2-5,S是正方形ABCD所在平面外一点,且SA=SB=SC=SD,点P在SC上,满足SP∶PC=1∶2,又点M与N分别在SB和SD上,且BM=DN,求当MN∶BD的值为多少时,SA∥平面PMN?
图2-5
如图2-5,S是正方形ABCD所在平面外一点,且SA=SB=SC=SD,点P在SC上,满足SP∶PC=1∶2,又点M与N分别在SB和SD上,且BM=DN,求当MN∶BD的值为多少时,SA∥平面PMN?
图2-5
如图2-4,已知PA⊥矩形ABCD所在平面,M、N、E分别为AB、PC、PD的中点,当∠PDA为多少度时,MN⊥平面PCD?
图2-4
如图2-3,在平面α内有ABCD,O为它的对角线的交点,点P在平面α外,且PA=PC,PB=PD,求证:PO⊥α.
图2-3
如图2-2,已知正方体ABCD—A1B1C1D1的棱长为a,求点C到平面A1BD的距离.
图2-2