(本小题满分13分)
已知函数
(1)判断的单调性;
(2)记若函数
有两个零点
,求证
已知四个正实数前三个数成等差数列,后三个数成等比数列,第一个与第三个的和为8,第二个与第四个的积为36.
(Ⅰ)求此四数;
(Ⅱ)若前三数为等差数列的前三项,后三数为等比数列
的前三项,令
,求数列
的前
项和
.
(1)讨论函数(
)的图像与直线
的交点个数.
(2)求证:对任意的,不等式
总成立.
已知直线的右焦点F,且交椭圆C于A,B两点.
(1)若抛物线的焦点为椭圆C的上顶点,求椭圆C的方程;
(2)对椭圆C,若直线L交y轴于点M,且,当m变化时,求
的值.
甲乙两队参加奥运知识竞赛,每队三人,每人回答一个问题,答对者为本队赢得一分,答错得零分.假设甲队中每人答对的概率均为,乙队中三人答对的概率分别为
,且各人回答得正确与否相互之间没有影响.
(1)若用表示甲队的总得分,求随机变量
分布列和数学期望;
(2)用表示事件“甲、乙两队总得分之和为
”,用
表示事件“甲队总得分大于乙队总得分”,求
.
在城的西南方向上有一个观测站
,在城
的南偏东
的方向上有一条笔直的公路,一辆汽车正沿着该公路上向城
驶来.某一刻,在观测站
处观测到汽车与
处相距
,在
分钟后观测到汽车与
处相距
.若汽车速度为
,求该汽车还需多长时间才能到达城
?