(本小题满分14分)
如图5, 已知抛物线,直线
与抛物线
交于
两点,
,
,
与
交于点
.
(1)求点的轨迹方程;
(2)求四边形的面积的最小值.
已知函数,求不等式
的解集。
数列中,已知
,
时,
.数列
满足:
.
(1)证明:为等差数列,并求
的通项公式;
(2)记数列的前
项和为
,若不等式
成立(
为正整数).求出所有符合条件的有序实数对
.
设椭圆:
的离心率为
,点
(
,0),
(0,
)原点
到直线
的距离为
。
(1) 求椭圆的方程;
(2) 设点为(
,0),点
在椭圆
上(与
、
均不重合),点
在直线
上,若直线
的方程为
,且
,试求直线
的方程.
设函数(
).区间
,定义区间
的长度为 b-a .
(1)求区间I的长度(用 a 表示);
(2)若,求
的最大值.
设是公比大于1的等比数列,
为数列
的前
项和.已知
,且
构成等差数列.
(1)求数列的通项公式;
(2)令,求数列
的前n项和
.