函数.
(1)若,求曲线
在
的切线方程;
(2)若函数在
上是增函数,求实数
的取值范围;
(3)设点,
,
满足
,判断是否存在实数
,使得
为直角?说明理由.
已知数列{an}是等差数列,{bn}是等比数列,且a1=b1=2,b4=54,a1+a2+a3=b2+b3.
(1)求数列{an}和{bn}的通项公式;
(2)数列{cn}满足cn=anbn,求数列{cn}的前n项和Sn.
如图,已知四棱锥P—ABCD的底面为等腰梯形,AB∥CD,AC⊥BD,垂足为H,PH是四棱锥的高,E为AD的中点.
(1)证明:PE⊥BC;
(2)若∠APB=∠ADB=60°,求直线PA与平面PEH所成角的正弦值.
设函数f(x)=sin xcos x-cos(π+x)cos x(x∈R).
(1)求f(x)的最小正周期;
(2)若函数y=f(x)的图象按b=平移后得到函数y=g(x)的图象,求y=g(x)在[0,
]上的最大值.
已知函数f(x)=ln x-ax+1在x=2处的切线斜率为-.
(1)求实数a的值及函数f(x)的单调区间;
(2)设g(x)=,对∀x1∈(0,+∞),∃x2∈(-∞,0)使得f(x1)≤g(x2)成立,求正实数k的取值范围;
(3)证明:+
+…+
<
(n∈N*,n≥2).
已知二次函数f(x)=ax2+bx+c (a≠0)且满足f(-1)=0,对任意实数x,恒有f(x)-x≥0,并且当x∈(0,2)时,f(x)≤.
(1)求f(1)的值;
(2)证明:a>0,c>0;
(3)当x∈[-1,1]时,函数g(x)=f(x)-mx (x∈R)是单调函数,求证:m≤0或m≥1.