游客
题文

函数
(1)若,求曲线的切线方程;
(2)若函数上是增函数,求实数的取值范围;
(3)设点满足,判断是否存在实数,使得为直角?说明理由.

科目 数学   题型 解答题   难度 较易
登录免费查看答案和解析
相关试题

如图,在四棱锥中,底面为直角梯形,且,平面底面的中点,是棱的中点,.

(Ⅰ)求证:平面
(Ⅱ)求三棱锥的体积.

已知数列的前项和为满足.
(Ⅰ)函数与函数互为反函数,令,求数列的前项和
(Ⅱ)已知数列满足,证明:对任意的整数,有.

在平面直角坐标系中,已知点,圆是以为圆心,半径为的圆,点是圆上任意一点,线段的垂直平分线和半径所在的直线交于点.
(Ⅰ)当点在圆上运动时,求点的轨迹方程
(Ⅱ)已知是曲线上的两点,若曲线上存在点,满足为坐标原点),求实数的取值范围.

学校操场边有一条小沟,沟沿是两条长150米的平行线段,沟宽为2米,,与沟沿垂直的平面与沟的交线是一段抛物线,抛物线的顶点为,对称轴与地面垂直,沟深2米,沟中水深1米.
(Ⅰ)求水面宽;
(Ⅱ)如图1所示形状的几何体称为柱体,已知柱体的体积为底面积乘以高,求沟中的水有多少立方米?

(Ⅲ)现在学校要把这条水沟改挖(不准填土)成截面为等腰梯形的沟,使沟的底面与地面平行,沟深不变,两腰分别与抛物线相切(如图2),问改挖后的沟底宽为多少米时,所挖的土最少?

如图1,已知的直径,点上两点,且为弧的中点.将沿直径折起,使两个半圆所在平面互相垂直(如图2).

(Ⅰ)求证:
(Ⅱ)在弧上是否存在点,使得平面?若存在,试指出点的位置;若不存在,请说明理由;
(Ⅲ)求二面角的正弦值.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号