如图1,已知的直径
,点
、
为
上两点,且
,
,
为弧
的中点.将
沿直径
折起,使两个半圆所在平面互相垂直(如图2).
(Ⅰ)求证:;
(Ⅱ)在弧上是否存在点
,使得
平面
?若存在,试指出点
的位置;若不存在,请说明理由;
(Ⅲ)求二面角的正弦值.
(本小题满分13分)
盒中装有个零件,其中
个是使用过的,另外
个未经使用.
(Ⅰ)从盒中每次随机抽取个零件,每次观察后都将零件放回盒中,求
次抽取中恰有
次
抽到使用过的零件的概率;
(Ⅱ)从盒中随机抽取个零件,使用后放回盒中,记此时盒中使用过的零件个数为
,求
的分布列和数学期望.
(本小题满分13分)已知函数,
.
(Ⅰ)求的零点;
(Ⅱ)求的最大值和最小值.
设是给定的正整数,有序数组
同时满足下列条件:
① ,
; ②对任意的
,都有
.
(1)记为满足“对任意的
,都有
”的有序数组
的个数,求
;
(2)记为满足“存在
,使得
”的有序数组
的个数,求
.
如图,正四棱柱中,设
,
,若棱
上存在点
满足
平面
,求实数
的取值范围.
在极坐标系中,已知点,
,求以
为直径的圆的极坐标方程.