现有4个人去参加某娱乐活动,该活动有甲、乙两个游戏可供参加者选择,为增加趣味性,约定:每个人通过掷一枚质地均匀的骰子决定自己去参加哪个游戏,掷出点数为1或2的人去参加甲游戏,掷出点数大于2的人去参加乙游戏.
(1)求这4个人中恰有2人去参加甲游戏的概率;
(2)求这4个人中去参加甲游戏的人数大于去参加乙游戏的人数的概率;
(3)用X,Y分别表示这4个人中去参加甲、乙游戏的人数,记ξ=|X Y|,求随机变量ξ的分布列与数学期望Eξ.
已知四边形ABCD满足,E是BC的中点,将△BAE沿AE翻折成
,F为
的中点.
(1)求四棱锥的体积;
(2)证明:;
(3)求面所成锐二面角的余弦值.
在△中,
是角
对应的边,向量
,
,且
.
(1)求角;
(2)函数的相邻两个极值的横坐标分别为
、
,求
的单调递减区间.
给定正整数,若项数为
的数列
满足:对任意的
,均有
(其中
),则称数列
为“Γ数列”.
(1)判断数列和
是否是“Γ数列”,并说明理由;
(2)若为“Γ数列”,求证:
对
恒成立;
(3)设是公差为
的无穷项等差数列,若对任意的正整数
,
均构成“Γ数列”,求的公差
.
已知椭圆的离心率为
,短轴端点分别为
.
(1)求椭圆的标准方程;
(2)若,
是椭圆
上关于
轴对称的两个不同点,直线
与
轴交于点
,判断以线段
为直径的圆是否过点
,并说明理由.