某重点大学自主招生考试过程依次为自荐材料审查、笔试、面试共三轮考核。规定:只能通过前一轮考核才能进入下一轮的考核,否则将被淘汰;三轮考核都通过才算通过该高校的自主招生考试。学生甲三轮考试通过的概率分别为,
,
,且各轮考核通过与否相互独立。
(1)求甲通过该高校自主招生考试的概率;
(2)若学生甲每通过一轮考核,则家长奖励人民币1000元作为大学学习的教育基金。记学生甲得到教育基金的金额为,求
的分布列和数学期望。
在四棱锥中,
,
,点
是线段
上的一点,且
,
.
(1)证明:面面
;
(2)求直线与平面
所成角的正弦值.
如图,海上有两个小岛相距10
,船O将保持观望A岛和B岛所成的视角为
,现从船O上派下一只小艇沿
方向驶至
处进行作业,且
.设
。
(1)用分别表示
和
,并求出
的取值范围;
(2)晚上小艇在处发出一道强烈的光线照射A岛,B岛至光线
的距离为
,求BD的最大值.
集合,
,若命题
,命题
,且
是
必要不充分条件,求实数
的取值范围。
(本小题满分14分)已知函数在点
的切线方程为
.
(Ⅰ)求函数的解析式;
(Ⅱ)设,求证:
在
上恒成立;
(Ⅲ)已知,求证:
.