(本小题满分12分)
如图,直三棱柱ABC—A1B1C1中,AC=BC=1,∠ACB=90°,AA1=,D是A1B1中点.
(1)求证:C1D⊥AB1 ;
(2)当点F在BB1上什么位置时,会使得AB1⊥平面C1DF?并证明你的结论.
(本小题满分10分)选修4—4:坐标系与参数方程
已知曲线的极坐标方程是
.以极点为平面直角坐标系的原点,极轴为
轴的正半轴,建立平面直角坐标系,直线
的参数方程是
是参数
.
(1)将曲线的极坐标方程化为直角坐标方程;
(2)若直线与曲线
相交于
、
两点,且
,求直线的倾斜角
的值.
(本小题满分10分)选修4—1:几何证明选讲
如图所示,PA为圆O的切线,A为切点,PBC是过点O的割线,PA=10,PB=5,∠BAC的平分线与BC和圆O分别交于点D和E.
(1)求证:;
(2)求AD·AE的值.
(本小题满分12分)设函数.
(Ⅰ)若函数在定义域上为增函数,求实数
的取值范围;
(Ⅱ)在(Ⅰ)的条件下,若函数,
使得
成立,求实数
的取值范围.
(本小题满分12分)
已知圆的公共点的轨迹为曲线
,且曲线
与
轴的正半轴相交于点
.若曲线
上相异两点
、
满足直线
,
的斜率之积为
.
(Ⅰ)求的方程;
(Ⅱ)证明直线恒过定点,并求定点的坐标;
(Ⅲ)求的面积的最大值.
(本小题满分12分)某市为增强市民的环境保护意识,面向全市征召义务宣传志愿者.把符合条件的1000名志愿者按年龄分组:第1组[20,25)、第2组[25,30)、第3组[30,35)、第4组[35,40)、第5组[40,45],得到的频率分布直方图如图所示:
(1)若从第3、4、5组中用分层抽样的方法抽取12名志愿者参加广场的宣传活动,应从第3、4、5组各抽取多少名志愿者?
(2)在(1)的条件下,该市决定在这12名志愿者中随机抽取3名志愿者介绍宣传经验,求第4组至少有一名志愿者被抽中的概率;
(3)在(2)的条件下,若ξ表示抽出的3名志愿者中第3组的人数,求ξ的分布列和数学期望.