游客
题文

(本小题满分12分)
如图,直三棱柱ABCA1B1C1中,ACBC=1,∠ACB=90°,AA1DA1B1中点.

(1)求证:C1DAB1 ;
(2)当点FBB1上什么位置时,会使得AB1⊥平面C1DF?并证明你的结论.

科目 数学   题型 解答题   难度 较易
登录免费查看答案和解析
相关试题

如图,菱形ABCD的对角线 AC BD 交于点 O AB = 5 AC = 6 ,点 E , F 分别在 AD , CD 上, AE = CF = 5 4 EF BD 于点 H .将 DEF 沿 EF 折到 D ' EF 的位置, O D ' = 10 .

image.png

(1)证明: D ' H 平面 ABCD

(2)求二面角 B - D ' A - C 的正弦值.

某险种的基本保费为 a (单位:元),继续购买该险种的投保人称为续保人,续保人的本年度的保费与其上年度的出险次数的关联如下:

上年度出险次数

0

1

2

3

4

5

保费

0.85a

a

1.25a

1.5a

1.75a

2a

设该险种一续保人一年内出险次数与相应概率如下:

一年内出险次数

0

1

2

3

4

5

概率

0.30

0.15

0.20

0.20

0.10

0. 05

(1)求一续保人本年度的保费高于基本保费的概率;

(2)若一续保人本年度的保费高于基本保费,求其保费比基本保费高出60%的概率;

(3)求续保人本年度的平均保费与基本保费的比值.

S n 为等差数列 { a n } 的前n项和,且 a n = 1 S 7 = 28 . b n = [ lg a n ] ,其中 [ x ] 表示不超过x的最大整数,如 [ 0 . 9 ] =0 [ lg 99 ] =1 .

(1)求 b 1 b 11 b 101

(2)求数列 { b n } 的前1 000项和.

设函数 f ( x ) = x - 1 3 - ax - b , x R ,其中 a , b R

(1)求 f ( x ) 的单调区间;

(2)若 f ( x ) 存在极点 x 0 , 且 f ( x 1 ) = f ( x 0 ) ,其中 x 1 x 0 , 求证: x 1 + 2 x 0 = 3

(3)设 a 0 ,函数 g ( x ) = f ( x ) ,求证: g ( x ) 在区间 [ 0 , 2 ] 上的最大值不小于 1 4 .

设椭圆 x 2 a 2 + y 2 3 1 a 3 的右焦点为F,右顶点为A,已知 1 | OF | + 1 | OA | = 3 e | FA | ,其中O为原点,e为椭圆的离心率.

(1)求椭圆的方程;

(2)设过点A的直线l与椭圆交于B(B不在 x 轴上),垂直于l的直线与l交于点M,与y轴交于点H,若 BF HF ,且 MOA = MAO ,求直线 l 的斜率.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号