平面上有两个质点A,B
,在某一时刻开始每隔1秒向上下左右任一方向移动一个单位. 已知质点A向左,右移动的概率都是
,向上,下移动的概率分别是
和
,质点B向四个方向移动的概率均为
.(1)求
和
的值;(2)试判断至少需要几秒,A、B能同时到达D
,并求出在最短时间同时到达的概率?
已知函数.
(Ⅰ)求的最小正周期;
(Ⅱ)若函数的图象是由
的图象向右平移
个单位长度,再向上平移1个单位长度得到的,当
[
,
]时,求
的最大值和最小值.
选修4-5:不等式选讲:
若关于的方程
有实根
(Ⅰ)求实数的取值集合
(Ⅱ)若对于,不等式
恒成立,求
的取值范围
选修4-4:极坐标与参数方程:
已知椭圆C的极坐标方程为,点
为其左,右焦点,直线
的参数方程为
(
为参数,
).
(Ⅰ)求直线和曲线C的普通方程;
(Ⅱ)求点到直线
的距离之和.
.选修4-1:几何证明选讲:
如图,在Rt△ABC中,, BE平分∠ABC交AC于点E, 点D在AB上,
.
(Ⅰ)求证:AC是△BDE的外接圆的切线;
(Ⅱ)若,求EC的长.
已知函数,其中
为实数.
(1)当时,求曲线
在点
处的切线方程;
(2)是否存在实数,使得对任意
,
恒成立?若不存在,请说明理由,若存在,求出
的值并加以证明.