如图所示,圆柱底面的直径长度为
,
为底面圆心,正三角形
的一个顶点
在上底面的圆周上,
为圆柱的母线,
的延长线交
于点
,
的中点为
.
(1)求证:平面⊥平面
;
(2)求二面角的正切值.
在我市“城乡清洁工程”建设活动中,社会各界掀起净化美化环境的热潮.某单位计划在小区内种植四棵风景树,受本地地理环境的影响,
两棵树的成活的概率均为
,另外两棵树
为进口树种,其成活概率都为
,设
表示最终成活的树的数量.
(1)若出现有且只有一颗成活的概率与
都成活的概率相等,求
的值;
(2)求的分布列(用
表示);
(3)若出现恰好两棵树成活的的概率最大,试求的取值范围.
在平面直角坐标系上,设不等式组表示的平面区域为
,记
内的整点(横坐标和纵坐标均为整数的点)的个数为
.
(1)求数列的通项公式;
(2)若,
.求证:数列
是等比数列,并求出数列
的通项公式.
已知函数.
(1)求函数的值域;
(2)在△中,角
所对的边分别为
,若
,且
,求
的值
已知函数,当
时,函数
取得极大值.
(1)求实数的值;
(2)已知结论:若函数在区间
内导数都存在,且
,则存在
,使得
.试用这个结论证明:若
,函数
,则对任意
,都有
;
(3)已知正数,满足
,求证:当
,
时,对任意大于
,且互不相等的实数
,都有
.