游客
题文

已知命题:函数上的减函数;命题:在
时,不等式恒成立,若是真命题,求实数的取值范围.

科目 数学   题型 解答题   难度 较易
登录免费查看答案和解析
相关试题

.(本小题满分10分)
如图,已知梯形ABCD中,AD∥BC,,AD=a,BC=2a,,在平面ABCD内,过C作,以为轴将梯形ABCD旋转一周,求所得旋转体的表面积及体积。

(本小题满分12分)
已知双曲线G的中心在原点,它的渐近线与圆x2+y2-10x+20=0相切.过点P(-4,0)作斜率为的直线,使得和G交于A,B两点,和y轴交于点C,并且点P在线段AB上,又满足|PA|·|PB|=|PC|2.
(1)求双曲线G的渐近线的方程;
(2)求双曲线G的方程;
(3)椭圆S的中心在原点,它的短轴是G的实轴.如果S中垂直于的平行弦的中点的轨迹恰好是G的渐近线截在S内的部分AB,若P(x,y)(y>0)为椭圆上一点,求当的面积最大时点P的坐标.

. (本小题满分12分)
如图,在四棱锥P-ABCD中,PA⊥平面ABCD,底面ABCD是菱形,AB=2,∠BAD=60°.
(1)求证:BD⊥平面PAC;
(2)若PA=AB,求PB与AC所成角的余弦值;
(3)当平面PBC与平面PDC垂直时,求PA的长.

(本小题满分12分)
椭圆的一个焦点与抛物线的焦点重合,且截抛物线的准线所得弦长为,倾斜角为的直线过点.
(1)求该椭圆的方程;
(2)设椭圆的另一个焦点为,问抛物线上是否存在一点,使得关于直线对称,若存在,求出点的坐标,若不存在,说明理由.

(本小题满分12分)
已知M(-3,0)﹑N(3,0),P为坐标平面上的动点,且直线PM与直线PN的斜率之积为常数m(m-1,m0).
(1)求P点的轨迹方程并讨论轨迹是什么曲线?
(2)若, P点的轨迹为曲线C,过点Q(2,0)斜率为的直线与曲线C交于不同的两点A﹑B,AB中点为R,直线OR(O为坐标原点)的斜率为,求证为定值;
(3)在(2)的条件下,设,且,求在y轴上的截距的变化范围.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号