已知函数为偶函数, 且
(Ⅰ)求的值;
(Ⅱ)若为三角形
的一个内角,求满足
的
的值.
从天气网查询到衡水历史天气统计 (2011-01-01到2014-03-01)资料如下:
自2011-01-01到2014-03-01,衡水共出现:多云507天,晴356天,雨194天,雪36天,阴33天,其它2天,合计天数为:1128天。
本市朱先生在雨雪天的情况下,分别以的概率乘公交或打出租的方式上班(每天一次,且交通方式仅选一种),每天交通费用相应为2元或40元;在非雨雪天的情况下,他以90%的概率骑自行车上班,每天交通费用0元;另外以10%的概率打出租上班,每天交通费用20元。(以频率代替概率,保留两位小数.参考数据:
)
(1)求他某天打出租上班的概率;
(2)将他每天上班所需的费用记为(单位:元),求
的分布列及数学期望。
已知等差列的前n项和为
(1)求数列的通项公式:
(2)若函数在
处取得最大值,且最大值为a2,求函数
的解析式。
在平面直角坐标系中,以原点为极点,轴为极轴建立极坐标系,曲线
的方程为
(
为参数),曲线
的极坐标方程为
,若曲线
与
相交于
、
两点.
(1)求的值;
(2)求点到
、
两点的距离之积.
如图所示,已知与⊙O相切,
为切点,过点
的割线交圆于
、
两点,弦
∥
,
、
相交于点
,
为
上一点,且
.
(1)求证:;
(2)若,
,
,求
的长.
在直角坐标系中,曲线
的参数方程为
,(
为参数),以原点
为极点,
轴正半轴为极轴,建立极坐标系,曲线
的极坐标方程为
.
(1) 求曲线的普通方程与曲线
的直角坐标方程;
(2) 设为曲线
上的动点,求点
到
上点的距离的最小值,并求此时点
的坐标.