(本小题满分12分)
某校共有800名学生,高三一次月考之后,为了了解学生学习情况,用分层抽样方法从中抽出若干学生此次数学成绩,按成绩分组,制成如下的频率分布表:
组号 |
第 一 组 |
第 二 组 |
第 三 组 |
第 四 组 |
第 五 组 |
第 六 组 |
第 七 组 |
第 八 组 |
合计 |
分组 |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
|
频数 |
4 |
6 |
20 |
22 |
18 |
![]() |
10 |
5 |
![]() |
频率 |
0.04 |
0.06 |
0.20 |
0.22 |
![]() |
0.15 |
0.10 |
0.05 |
1 |
(Ⅰ) 李明同学本次数学成绩为103分,求他被抽中的概率;
(Ⅱ) 为了了解数学成绩在120分以上的学生的心理状态,现决定在第六、七、八组中用分层抽样方法抽取6名学生的成绩,并在这6名学生中在随机抽取2名由心理老师张老师负责面谈,求第七组至少有一名学生与张老师面谈的概率;
(Ⅲ) 估计该校本次考试的数学平均分。
(本小题满分14分)如图,在四棱锥P - ABCD中,四边形ABCD是矩形,平面PCD⊥平面ABCD,M为PC中点.求证:
(1)PA∥平面MDB;
(2)PD⊥BC.
(本小题满分14分)某市规定,高中学生在校期间须参加不少于80小时的社区服务才合格.某校随机抽取20位学生参加社区服务的数据,按时间段[75,80),[80,85),[85,90),[90,95),[95,100](单位:小时)进行统计,其频率分布直方图如图所示.
(1)求抽取的20人中,参加社区服务时间不少于90小时的学生人数;
(2)从参加社区服务时间不少于90小时的学生中任意选取2人,求所选学生的参加社区服务时间在同一时间段内的概率.
(本小题满分14分)已知圆的圆心为坐标原点,且经过点(-1,).
(1)求圆的方程;
(2)若直线与此圆有且只有一个公共点,求
的值;
(3)求直线被此圆截得的弦长.
设数列的前
项的和
,已知
.
(1)求的值;
(2)证明:数列是等差数列,并求出数列
的通项公式;
(3)证明:对一切正整数,有
.
对任意函数f(x),x∈D,可按如图构造一个数列发生器,记由数列发生器产生数列{xn}.
(1)若定义函数,且输入
,请写出数列{xn}的所有项;
(2)若定义函数f(x)=xsinx(0≤x≤2π),且要产生一个无穷的常数列{xn},试求输入的初始数据x0的值及相应数列{xn}的通项公式xn;
(3)若定义函数f(x)=2x+3,且输入x0=﹣1,求数列{xn}的通项公式xn.