(拓展深化)如图①所示,△ABC内接于⊙O,AB=AC,D是BC边上的一点,E是直线AD和△ABC外接圆的交点.
(1)求证:AB2=AD·AE;
(2)如图②所示,当D为BC延长线上的一点时,第(1)题的结论成立吗?若成立,请证明;若不成立,请说明理由.
如图所示,AB是⊙O的直径,弦AC=3 cm,BC=4 cm,CD⊥AB,垂足为D,求AD、BD和CD的长.
定义在R上的函数同时满足以下条件:
①在(0,1)上是减函数,在(1,+∞)上是增函数;
②是偶函数;
③在x=0处的切线与直线y=x+2垂直.
(1)求函数的解析式;
(2)设g(x)=,若存在实数x∈[1,e],使g(x)<
,求实数m的取值范围。
已知动点P与平面上两定点连线的斜率的积为定值
.
(1)试求动点P的轨迹方程C.
(2)设直线与曲线C交于M、N两点,当|MN|=
时,求直线l的方程.
已知是等差数列,前n项和是
,且
,
,
(1)求数列的通项公式;
(2)令=
·2n,求数列
的前n项和