某市旅游部门开发一种旅游纪念品,每件产品的成本是
元,销售价是
元,月平均销售
件.通过改进工艺,产品的成本不变,质量和技术含金量提高,市场分析的结果表明,如果产品的销售价提高的百分率为
,那么月平均销售量减少的百分率为
.记改进工艺后,旅游部门销售该纪念品的月平均利润是
(元).
(1)写出
与
的函数关系式;
(2)改进工艺后,确定该纪念品的售价,使旅游部门销售该纪念品的月平均利润最大.
已知函数
.
(Ⅰ)若
,求不等式
的解集;
(Ⅱ)若方程
有三个不同的解,求
的取值范围.
已知曲线
的极坐标方程是
,以极点为原点,极轴为
轴正方向建立平面直角坐标系,直线的参数方程是:
(为参数).
(Ⅰ)求曲线
的直角坐标方程;
(Ⅱ)设直线与曲线
交于
,
两点,点
的直角坐标为
,若
,求直线的普通方程.
切线
与圆切于点
,圆内有一点
满足
,
的平分线
交圆于
,
,延长
交圆于
,延长
交圆于
,连接
.
(Ⅰ)证明:
//
;
(Ⅱ)求证:
.
已知函数
为常数,e是自然对数的底数.
(Ⅰ)当
时,证明
恒成立;
(Ⅱ)若
,且对于任意
,
恒成立,试确定实数
的取值范围.
椭圆C以抛物线
的焦点为右焦点,且经过点A(2,3).
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)若
分别为椭圆的左右焦点,求
的角平分线所在直线的方程.