(本小题满分12分)如图,已知三棱柱ABC-A1B1C1(I)若M、N分别是AB,A1C的中点,求证:MN//平面BCC1B1(II)若三棱柱ABC-A1B1C1的各棱长均为2,∠B1BA=∠B1BC=60°,P为线段B1B上的动点,当PA+PC最小时,求证:B1B⊥平面APC。
已知为锐角,且,函数,数列的首项. (1)求函数的表达式; (2)求数列的前项和.
如图,正三角形的边长为2,分别在三边和上,且为的中点,. (1)当时,求的大小; (2)求的面积的最小值及使得取最小值时的值.
设函数 (1)当时,解不等式:; (2)若不等式的解集为,求的值.
如图,在中,是的角平分线,的外接圆交于点,. (1)求证:; (2)当时,求的长.
(本小题满分12分)已知函数(). (1)当时,求函数的单调区间; (2)是否存在实数,使恒成立,若存在,求出实数的取值范围;若不存在,说明理由.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号