设直线l1:y=k1x+1,l2:y=k2x-1,其中实数k1,k2满足k1k2+1=0.
(Ⅰ)证明:直线l1与l2相交;(Ⅱ)试用解析几何的方法证明:直线l1与l2的交点到原点距离为定值.(Ⅲ)设原点到l1与l2的距离分别为d1和d2求d1+d2的最大值
如图,平面ACB⊥平面BCD,∠CAB=∠CBD=900, ∠BDC=600,BC=6,AB=AC.
(Ⅰ)求证:平面ABD⊥平面ACD;(Ⅱ)求二面角A—CD—B的平面角的正切值;
(Ⅲ)设过直线AD且与BC平行的平面为,求点B到平面
的距离。
如图,长方体中,
,点
在
上且
,过点
的平面截长方体,截面为
(
在
上).
(1)求的长度;(2)求点C到截面
的距离.
如图,四棱锥中,侧面
是边长为2的正三角形,且与底面垂直,底面
是
的菱形,
为
的中点.
(Ⅰ) 求证:平面
;
(Ⅱ) 求二面角的余弦值.
已知四棱锥(如图)底面是边长为2的正方形.侧棱
底面
,
、
分别为
、
的中点,
于
。
(Ⅰ)求证:平面⊥平面
;
(Ⅱ)直线与平面
所成角的正弦值为
,求PA的长;
(Ⅲ)在条件(Ⅱ)下,求二面角的余弦值。
如图,某建筑物的基本单元可近似地按以下方法构作:先在地平面内作菱形ABCD,边长为1,∠BAD=60°,再在
的上方,分别以△
与△
为底面安装上相同的正棱锥P-ABD与Q-CBD,∠APB=90°.
(Ⅰ)求证:PQ⊥BD;
(Ⅱ)求二面角P-BD-Q的余弦值;
(Ⅲ)求点P到平面QBD的距离.