游客
题文

(本小题满分15分)
给定椭圆C:,称圆心在原点O、半径是的圆为椭圆C的“准圆”.已知椭圆C的一个焦点为,其短轴的一个端点到点的距离为
(1)求椭圆C和其“准圆”的方程;
(2)若点是椭圆C的“准圆”与轴正半轴的交点,是椭圆C上的两相异点,且轴,求的取值范围;
(3)在椭圆C的“准圆”上任取一点,过点作直线,使得与椭圆C都只有一个交点,试判断是否垂直?并说明理由.

科目 数学   题型 解答题   难度 较易
登录免费查看答案和解析
相关试题

已知函数
(1)若曲线在点处的切线与直线垂直,求的值;
(2)求函数的单调区间;(3)当,且时,证明:

已知抛物线,点关于轴的对称点为,直线过点交抛物线于两点.
(1)证明:直线的斜率互为相反数;
(2)求面积的最小值;
(3)当点的坐标为.根据(1)(2)推测并回答下列问题(不必说明理由):
①直线的斜率是否互为相反数? ②面积的最小值是多少?

在某校组织的一次篮球定点投篮比赛中,两人一对一比赛规则如下:若某人某次投篮命中,则由他继续投篮,否则由对方接替投篮.现由甲、乙两人进行一对一投篮比赛,甲和乙每次投篮命中的概率分别是.两人投篮3次,且第一次由甲开始投篮,假设每人每次投篮命中与否均互不影响.
(1)求3次投篮的人依次是甲、甲、乙的概率;
(2)若投篮命中一次得1分,否则得0分,用表示甲的总得分,求的分布列和数学期望.

如图所示,在边长为的正方形中,点在线段上,且,作,分别交于点,作,分别交于点,将该正方形沿折叠,使得重合,构成如图所示的三棱柱
(1)求证:平面
(2)求四棱锥的体积;
(3)求平面与平面所成角的余弦值.

已知数列,其中,数列的前项和,数列满足
(1)求数列的通项公式;
(2)是否存在自然数,使得对于任意,有恒成立?若存在,求出的最小值;

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号