已知是椭圆
的右焦点,圆
与
轴交于
两点,
是椭圆
与圆
的一个交点,且
.
(Ⅰ)求椭圆的离心率;
(Ⅱ)过点与圆
相切的直线
与
的另一交点为
,且
的面积等于
,求椭圆
的方程.
.已知,函数
,
.
(Ⅰ)当时,求曲线
在点
处的切线方程;
(Ⅱ)若恒成立,求实数
的取值范围.
如图,分别过椭圆E:左右焦点
、
的动直线l1、l2相交于P点,与椭圆E分别交于A、B与C、D不同四点,直线OA、OB、OC、OD的斜率
、
、
、
满足
.已知当l1与x轴重合时,
,
.
(Ⅰ)求椭圆E的方程;
(Ⅱ)是否存在定点M、N,使得为定值.若存在,求出M、N点坐标,若不存在,说明理由.
如图,四边形ABCD中,为正三角形,
,
,AC与BD交于O点.将
沿边AC折起,使D点至P点,已知PO与平面ABCD所成的角为
,且P点在平面ABCD内的射影落在
内.
(Ⅰ)求证:平面PBD;
(Ⅱ)若已知二面角的余弦值为
,求
的大小.
数列是公比为
的等比数列,且
是
与
的等比中项,前
项和为
.数列
是等差数列,
,前
项和
满足
为常数,且
.
(Ⅰ)求数列的通项公式及
的值;
(Ⅱ)比较与
的大小.
已知函数(
R,
,
,
)图象如图,P是图象的最高点,Q为图象与x轴的交点,O为原点.且,
,
.
(Ⅰ)求函数的解析式;
(Ⅱ)将函数图象向右平移1个单位后得到函数
的图象,当
时,求函数
的最大值.