如图,已知四棱锥S—ABCD中,△SAD是边长为a的正三角形,平面SAD⊥平面ABCD,四边形ABCD为菱形,∠DAB=60°,P为AD中点,Q为SB中点,(1)求证:PQ∥平面SCD;(2)求二面角B—PC—Q的正切值的大小。
如图,已知正方体棱长为2,
、
、
分别是
、
和
的中点.
(1)证明:面
;
(2)求二面角的余弦值.
已知椭圆的离心率为
,直线
与圆
相切.
(1)求椭圆的方程;
(2)设直线与椭圆
的交点为
,求弦长
.
设命题:实数
满足
,其中
;命题
:实数
满足
.
(1)若,且
为真,求实数
的取值范围;
(2)若是
成立的必要不充分条件,求实数
的取值范围.
已知,
,点
的坐标为
.
(1)求当时,点
满足
的概率;
(2)求当时,点
满足
的概率.
某社团组织20名志愿者利用周末和节假日参加社会公益活动,志愿者中,年龄在20至40岁的有12人,年龄大于40岁的有8人.
(1)在志愿者中用分层抽样方法随机抽取5名,年龄大于40岁的应该抽取几名?
(2)上述抽取的5名志愿者中任取2名,求取出的2人中恰有1人年龄大于40岁的概率.