(本小题满分13分)(本小题满分12分)某地方政府准备在一块面积足够大的荒地上建一如图所示的一个矩形综合性休闲广场,其总面积为3000平方米,其中场地四周(阴影部分)为通道,通道宽度均为2米,中间的三个矩形区域将铺设塑胶地面作为运动场地(其中两个小场地形状相同),塑胶运动场地占地面积为平方米.(1)分别写出用表示和用表示的函数关系式(写出函数定义域);(2)怎样设计能使S取得最大值,最大值为多少?
已知数列中, (Ⅰ)求数列的通项; (Ⅱ)求数列的前项和; (Ⅲ)若存在,使得成立,求实数的最小值.
已知定义在上的函数(其中). (Ⅰ)解关于的不等式; (Ⅱ)若不等式对任意恒成立,求的取值范围.
在中,内角、、的对边分别为、、,已知、、成等比数列,且. (Ⅰ)求的值; (Ⅱ)设,求、的值.
是公比大于的等比数列,是的前项和.若,且,,构成等差数列. (Ⅰ)求的通项公式. (Ⅱ)令,求数列的前项和.
设函数. (1)若x=时,取得极值,求的值; (2)若在其定义域内为增函数,求的取值范围; (3)设,当=-1时,证明在其定义域内恒成立,并证明().
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号