在中,内角
所对的边分别为
,
.
(Ⅰ)确定角的大小;
(Ⅱ)若的角平分线
交线段
于
,且
,设
.
(ⅰ)试确定与
的关系式;
(ⅱ)记和
的面积分别为
、
,问当
取何值时,
+
的值最小,最小值是多少?
如图,四棱锥中,
为矩形,平面
平面
.
(Ⅰ)求证:
(Ⅱ)若,问当
为何值时,四棱锥
的体积最大?并求其最大体积.
已知数列中,
,且点
在函数
的图象上
,数列
是各项都为正数的等比数列,且
.
(Ⅰ)求数列,
的通项公式;
(Ⅱ)若数列满足
,记数列
的前n项和为
,求
的值.
参加市数学调研抽测的某校高三学生成绩分析的茎叶图和频率分布直方图均受到不同程度的破坏,但可见部分信息如下,据此解答如下问题:
(1)求参加数学抽测的人数、抽测成绩的中位数及分数分别在
,
内的人数;
(2)若从分数在内的学生中任选两人进行调研谈话,求恰好有一人分数在
内的概率.
(本小题满分7分) 选修4—5:不等式选讲
已知关于的不等式:
的整数解有且仅有一个值为2.
(Ⅰ)求整数的值;
(Ⅱ)已知,若
,求
的最大值.