游客
题文

(本小题满分12分)
如图椭圆的两个焦点为和顶点构成面积为32的正方形.

(1)求此时椭圆的方程;
(2)设斜率为的直线与椭圆相交于不同的两点的中点,且. 问:两点能否关于直线对称. 若能,求出的取值范围;若不能,请说明理由.

科目 数学   题型 解答题   难度 容易
登录免费查看答案和解析
相关试题

已知函数).
(1)若,求函数的单调增函数;
(2)若时,函数的最大值为,最小值为,求的值.

将圆x2+y2=1上每一点的横坐标保持不变,纵坐标变为原来的2倍,得曲线C.
(1)写出C的参数方程;
(2)设直线l:2x+y-2=0与C的交点为P1,P2,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,求过线段P1P2的中点且与l垂直的直线的极坐标方程.

已知函数为实常数) .
(1)求的单调区间;
(2)当时,讨论方程根的个数.
(3)若,且对任意的,都有,求实数a的取值范围.

已知椭圆C的离心率为,直线被以椭圆的短轴为直径的圆截得弦长为,抛物线以原点为顶点,椭圆的右焦点为焦点.
(Ⅰ)求椭圆与抛物线的方程;
(Ⅱ)已知是椭圆上两个不同点,且,判定原点到直线的距离是否为定值,若为定值求出定值,否则,说明理由.

已知等差数列的首项,公差,且的第二项、第五项、第十四项成等比数列。
(1)求数列的通项公式;
(2)设,记为数列的前n项和,求并说明是否存在最大的整数t,使得对任意的n均有总成立?若存在,求出t;若不存在,请说明理由.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号