游客
题文

(本小题满分12分)
如图,为椭圆上的一个动点,弦分别过焦点,当垂直于轴时,恰好有

(Ⅰ)求椭圆的离心率;
(Ⅱ)设.
①当点恰为椭圆短轴的一个端点时,求的值;
②当点为该椭圆上的一个动点时,试判断是否为定值?
若是,请证明;若不是,请说明理由.

科目 数学   题型 解答题   难度 容易
登录免费查看答案和解析
相关试题

已知曲线的极坐标方程是,以极点为原点,极轴为轴的正半轴建立平面直角坐标系,直线的参数方程为为参数).
(Ⅰ)写出直线的普通方程与曲线的直角坐标方程;
(Ⅱ)设曲线经过伸缩变换得到曲线,设为曲线上任一点,求的最小值,并求相应点的坐标.


(Ⅰ)当,解不等式
(Ⅱ)当时,若,使得不等式成立,求实数的取值范围.

如图,在正△ABC中,点D,E分别在边AC, AB上,且AD=AC,AE=AB,BD,CE相交于点F.

(Ⅰ)求证:A,E,F,D四点共圆;
(Ⅱ)若正△ABC的边长为2,求A,E,F,D所在圆的半径.

,.
(Ⅰ)当时,求曲线处的切线的方程;
(Ⅱ)如果存在,使得成立,求满足上述条件的最大整数;
(Ⅲ)如果对任意的,都有成立,求实数的取值范围.

如图,已知抛物线和⊙,过抛物线上一点作两条直线与⊙相切于两点,分别交抛物线为E、F两点,圆心点到抛物线准线的距离为

(Ⅰ)求抛物线的方程;
(Ⅱ)当的角平分线垂直轴时,求直线的斜率;
(Ⅲ)若直线轴上的截距为,求的最小值.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号